BASS XXIX

Charlotte, NC
24 October 2022

The Epistemological Superiority of Bayesian Inference over Frequentist Inference
 Inferring What is Likely To Be True

Stephen J. Ruberg, PhD
President
Analytix Thinking, LLC
AnalytixThinking@gmail.com
AnalytixThinking.blog

Bringing data to life.

Background

Perspective

My journey into Bayesian thinking

- Never took a Bayesian class
- Never did a Bayesian analysis

Objectives

Tell stories

Give examples
Help with communication/teaching
Even a few new ideas
■xploratory vs confirmatory
$\square \operatorname{Pr}($ false positive finding)
Epistemology

Part 1

The First

Story on

My Journey

Thought Experiment

\$300,000,000

90\% Probability

Thought Experiment

Conditional Probability

Example of Conditional Probability

- The key word is IF
- Very low probability of winning (odds: 1:292,301,338)

Solution:
Unconditional
Pr (you receive a share)
$=\operatorname{Pr}(I$ choose to share IF (I win) * $\operatorname{Pr}(I$ win $)$
$=\quad .90 \quad * \quad 0.0000000034211$
$=0.00000000307901$
Most decisions are made using unconditional probabilities.

Conditional Probability

Power $=\operatorname{Pr}\left(\right.$ reject $\left.H_{0} \mid \delta \geq d\right)$
\square What is the $\operatorname{Pr}(\delta \geq \mathrm{d})$? Conditional

Unconditional probability to reject H_{0}
$\square \operatorname{Pr}\left(\right.$ reject $\left.\mathrm{H}_{0} \mid \delta \geq \mathrm{d}\right) * \operatorname{pr}(\delta \geq \mathrm{d})$.
Power pdf for δ
$\int_{-\infty}^{\infty} \operatorname{Pr}\left(\right.$ reject $\left.H_{0} \mid \delta\right) * \operatorname{pdf}(\delta) d \delta$

Conditional Probability

$\operatorname{Pr}\left(\right.$ reject $\mathrm{H}_{0} \mid$

$\delta) ~ * \underbrace{\operatorname{pdf}(\delta)} d \delta$
Assurance
Pr(study success)
Average power
"Bayesian Power"

What about other Bayesian concepts?

Part 2

My Thought Experiment on My Journey

Another Thought Experiment

10,000 Coins

9,999 Fair Coins (H/T)

 1 Biased Coin (H/H)
Problem

1. I draw out one coin.
2. I will flip it repeatedly and tell you the result.
3. You tell me when you decide whether I have the Biased Coin or not.

The Bet

Number of Flips	Result	Biased Coin?
1	H	Y or N
2	H	Y or N
3	H	Y or N
4	H	Y or N
5	H	Y or N
6	H	Y or N
7	H	Y or N
8	H	Y or N
9	H	Y or N
10	H	Y or N

Number of Flips	Result	Biased Coin?
11	H	Y or N
12	H	Y or N
13	H	Y or N
14	H	Y or N
15	H	Y or N
16	H	Y or N
17	H	Y or N
18	H	Y or N
19	H	Y or N
20	H	Y or N

A Problem of Inference

Decision Rule: See N consecutive H’s

$$
\begin{aligned}
& \mathrm{H}_{0} \text { : Coin is fair } \\
& \text { pr(heads) }=0.50
\end{aligned}
$$

pr[N consecutiv

selected your risk) Thave se le level of the test - 10 consecutive H 's are observed cutive heads | fair coin] $=(0.50)^{10}=0.0009766$ Defines the significance level of the data or the p-value

A Problem of Inference

NHST* \cong proof by contradiction
We want H_{a} to be true** or

We want to evaluate
$\operatorname{pr}\left(\mathrm{H}_{\mathrm{a}}\right.$ is true | observed data) \equiv $\mathrm{pr}\left(\mathrm{H}_{0}\right.$ is false | observed data)
*Null Hypothesis Significance Testing
** Except in equivalence testing

A Problem of Inference

Question of Interest

How many consecutive H's are needed to bet that I selected the Biased Coin?

What is the pr(I pulled the biased coin)?

or

When is $\operatorname{pr}($ biased coin $\mid n)>0.50$?

A Problem of Inference

$\operatorname{pr}($ bias coin selected $\mid \mathrm{n}$ consecutive heads observed $)=r$

Bayes Then

[as formus col If unlike Don mav,000) $+(.50 *(9999 / 10,000)$]

\cdots coin | 10 consecutive heads] $=0.093$

A Problem of Inference

How did we get into this mess?

Two Perspectives

1. What is the probability of seeing N consecutive heads IF I have a fair coin?
Frequentist Approach
2. What is the probability that I selected the biased coin IF I observe N consecutive heads ... [from a coin randomly drawn from a bag of 9,999 fair coins and 1 biased coin]?
Bayesian Approach

Frequentists Results

Number of Flips	Result	p-value
$\mathbf{1}$	H	0.500000000
$\mathbf{2}$	H	0.250000000
$\mathbf{3}$	H	0.125000000
$\mathbf{4}$	H	0.062500000
$\mathbf{5}$	H	0.031250000
$\mathbf{6}$	H	0.015625000
$\mathbf{7}$	H	0.007812500
$\mathbf{8}$	H	0.003906250
$\mathbf{9}$	H	0.001953125
$\mathbf{1 0}$	H	0.000976563

Number of Flips	Result	p-value
11	H	0.000488281
12	H	0.000244141
13	H	0.000122070
14	H	0.000061035
15	H	0.000030518
16	H	0.000015259
17	H	0.000007629
18	H	0.000003815
19	H	0.000001907
20	H	0.000000954

Frequentists Results

$\operatorname{Pr}(13$ consecutive H's with a fair coin $)=0.000122070$

$$
\cong 1.2 / 10,000
$$

More Likely

$\operatorname{Pr}($ Pull the 1 biased coin from the bag) $=1 / 10,000$

Less Likely

$\operatorname{Pr}(14$ consecutive H's with a fair coin) $=0.000061035$
$\cong 0.6 / 10,000$

Frequentists Results

P-value is conditional on H_{0} being true.

$$
\text { P-value }=\operatorname{Pr}\left(\text { reject } \mathrm{H}_{0} \mid \mathrm{H}_{0} \text { is true }\right)
$$

Recall the Lottery Example Pr (you receive a share)
 $=\operatorname{Pr}\left(I\right.$ choose to share IF I win) ${ }^{*} \operatorname{Pr}(I$ win)

What's $\operatorname{Pr}\left(\mathrm{H}_{0}\right.$ is true)? $\quad 9,999 / 10,000$
More on this later !!

Two Perspectives

2. Pr (coin is biased | observed data)

If we have $P(A \mid B)$,
we want to obtain the conditional probability $P(B \mid A)$

Bayes Theorem (1763)*

$$
\begin{gathered}
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)} \\
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)}
\end{gathered}
$$

*As formulated by Laplace (1812)

Bayesian Results

Bayesian Results

Number of Flips	Result	Pr(Biased Coin)
$\mathbf{1}$	H	0.000200
$\mathbf{2}$	H	0.000400
$\mathbf{3}$	H	0.000799
$\mathbf{4}$	H	0.001598
$\mathbf{5}$	H	0.003190
$\mathbf{6}$	H	0.006360
$\mathbf{7}$	H	0.012639
$\mathbf{8}$	H	0.024968
$\mathbf{9}$	H	0.048711
$\mathbf{1 0}$	H	0.092897

Number of Flips	Result	Pr (Biased Coin)
11	H	0.170001
12	H	0.290600
13	H	0.450333
14	H	0.621006
15	H	0.766198
16	H	0.867624
17	H	0.929121
18	H	0.963258
19	H	0.981285
20	H	0.990554

Bayesian Results

$\operatorname{Pr}($ Biased coin | 13 consecutive H 's $)=0.450333$

$$
\cong 45 \%
$$

Less Likely to Win Bet

Even odds for the bet $=\operatorname{Pr}($ biased coin $)=50 \%$
More Likely to Win Bet
$\operatorname{Pr}\left(\right.$ Biased coin | 14 consecutive $\left.H^{\prime} \mathrm{s}\right)=0.621006$

$$
\cong 62 \%
$$

A Problem of Inference

100 Coins

99 Fair Coins (H/T)
1 Biased Coin (H/H)

Problem

1. I draw out one coin.
2. I will flip it repeatedly and tell you the result.
3. You tell me when you decide whether I have the Biased Coin or not.

The Results

Number of Flips	Result	Biased Coin?
1	H	
2	H	
3	H	
4	H	
5	H	
6	H	
7	H	
8	H	
9	H	
10	H	

Number of Flips	Result	Biased Coin?
11	H	
12	H	
13	H	
14	H	
15	H	
16	H	
17	H	
18	H	
19	H	
20	H	

The Results

Number of Flips	$\begin{aligned} & \text { Prior = 1/10,000 } \\ & \text { Pr(Biased Coin) } \end{aligned}$	$\begin{gathered} \text { Prior }=1 / 100 \\ \operatorname{Pr}(\text { Biased Coin }) \end{gathered}$	Number of Flips	$\begin{aligned} & \text { Prior = 1/10,000 } \\ & \text { Pr(Biased Coin) } \end{aligned}$	$\begin{gathered} \text { Prior = 1/100 } \\ \operatorname{Pr}(\text { Biased Coin }) \end{gathered}$
1	0.000200	0.019802	11	0.170001	
2	0.000400	π	12	0.290600	
3	0.000799		13	0.450333	
4	0.001598		14	0.621006	
5	0.003190		15	0.766198	
6	0.006360		16	0.867624	
7	0.012639		17	0.929121	
8	0.024963		18	0.963258	
9	0.048711		19	0.981285	
10	0.092897		20	0.990554	

The Results

Number of Flips	Prior = 1/10,000 $\operatorname{Pr}($ Biased Coin)	Prior = 1/100 $\operatorname{Pr}($ Biased Coin)
$\mathbf{1}$	0.000200	0.019802
$\mathbf{2}$	0.000400	0.038835
$\mathbf{3}$	0.000799	0.074766
$\mathbf{4}$	0.001598	0.139130
$\mathbf{5}$	0.003190	0.244275
$\mathbf{6}$	0.006360	0.392638
$\mathbf{7}$	0.012639	0.563877
$\mathbf{8}$	0.024963	0.721127
$\mathbf{9}$	0.048711	0.837971
$\mathbf{1 0}$	$\mathbf{0 . 0 9 2 8 9 7}$	0.911843

Number of Flips	Prior = 1/10,000 $\operatorname{Pr}($ Biased Coin)	Prior = 1/100 $\operatorname{Pr}($ Biased Coin)
11	0.170001	
12	0.290600	
13	0.450333	
14	0.621006	
15	0.766198	
16	0.867624	
17	0.929121	
18	0.963258	
19	0.981285	
20	0.990554	

The Results

Number of Flips	Prior $=1 / 10,000$ $\operatorname{Pr}($ Biased Coin)	Prior $=1 / 100$ $\operatorname{Pr}($ Biased Coin)
$\mathbf{1}$	0.000200	0.019802
$\mathbf{2}$	0.000400	0.038835
$\mathbf{3}$	0.000799	0.074766
$\mathbf{4}$	0.001598	0.139130
$\mathbf{5}$	0.003190	0.244275
$\mathbf{6}$	0.006360	0.392638
$\mathbf{7}$	0.012639	0.563877
$\mathbf{8}$	0.024963	0.721127
$\mathbf{9}$	0.048711	0.837971
$\mathbf{1 0}$	0.092897	0.911843

Number of Flips	Prior $=1 / 10,000$ $\operatorname{Pr}($ Biased Coin)	Prior $=1 / 100$ $\operatorname{Pr}($ Biased Coin)
$\mathbf{1 1}$	0.170001	0.953889
12	0.290600	0.976400
13	0.450333	0.988059
14	0.621006	0.993994
15	0.766198	0.996988
16	0.867624	0.998492
17	0.929121	0.999245
$\mathbf{1 8}$	0.963258	0.999622
19	0.981285	0.999811
$\mathbf{2 0}$	0.990554	0.999906

The Results

\# of Flips	p-value	$\begin{gathered} \text { Prior = 1/10,000 } \\ \text { Pr(Biased Coin) } \end{gathered}$	$\begin{gathered} \text { Prior }=1 / 100 \\ \text { Pr(Biased Coin) } \end{gathered}$	\# of Flips	p-value	$\begin{gathered} \text { Prior = 1/10,000 } \\ \text { Pr(Biased Coin) } \end{gathered}$	$\begin{gathered} \text { Prior = 1/100 } \\ \text { Pr(Biased Coin) } \end{gathered}$
1	0.500000	0.000200	0.019802	11	0.0004882	0.170001	0.953889
2	0.250000	0.000400	0.038835	12	0.0002441	0.290600	0.976400
3	0.125000	0.000799	0.074766	13	0.0001220	0.450333	0.988059
4	0.062500	0.001598	0.139130	14	0.0000610	0.621006	0.993994
5	0.031250	0.003190	0.244275	15	0.0000305	0.766198	0.996988
6	0.015625	0.006360	0.392638	16	0.0000153	0.867624	0.998492
7	0.0078125	0.012639	0.563877	17	0.0000076	0.929121	0.999245
8	0.0039063	0.024963	0.721127	18	0.0000038	0.963258	0.999622
9	0.0019531	0.048711	0.837971	19	0.0000019	0.981285	0.999811
10	0.0009766	0.092897	0.911843	20	0.0000010	0.990554	0.999906

Note: The p-value never changes regardless of your prior knowledge!!!!

VERYImportant Lesson

For the SAME DATA (i.e., evidence), you arrive at

DIFFERENT CONCLUSIONS

(i.e., decisions)

based on your PRIOR KNOWLEDGE!

Coin in Bag Summary

Cannot interpret a p-value in isolation

Need to know prior belief
about $\mathrm{H}_{0}\left(\right.$ or H_{a})
Conditional probability

Coin in Bag Summary

Frequentist \Rightarrow pr(Data $\left.\mid \mathrm{H}_{0}\right)$ Bayesian $\Rightarrow \mathrm{pr}\left(\mathrm{H}_{0} \mid\right.$ Data $)$

as different as

$\operatorname{Pr}(c l o u d y \mid$ rain $)$ Pr (rain | cloudy)

A Problem of Inference

Traditionally, statisticians have been "selling" $\operatorname{Pr}($ data|hypothesis) [i.e., the p-value] The first great "bait and switch" that statisticians

have pulled on scientists.

to quantify the likelihood of a hypothesis !!!!!!

Part 3

Another Story on

My Journey

Another Thought Experiment

5\% of
Population have ALK
gene

Patients

Sensitivity

Diagnostic Test
 Diagnostic

Individual Patient

Diagnostic Decision-Making

Developing/Designing the "Assay"

Conditional Probability

Patient Characteristic

		Positive	Negative
	$\begin{aligned} & \text { N } \\ & \stackrel{Z}{n} \\ & 0 \\ & 0 \end{aligned}$	True Positive 95\% (Sensitivity)	False Positive 5\%
		False Negative 5\%	$\begin{gathered} \text { True Negative } \\ 95 \% \\ \text { (Specificity) } \end{gathered}$

Diagnostic Decision-Making

Interpreting an Observed Result

Observed \downarrow		Patient Characteristic (Unknown Truth)		Proba
		Positive	Negative	
Diagnostic Test	\#	True Positive 95\%	False Positive 5\%	Positive Predictive Value
		False Negative 5%	True Negative 95\%	Negative Predictive Value

Prob (patient has the characteristic IF the diagnostic test is positive)

Diagnostic Decision-Making

Underlying Prevalence for ALK gene is 5\%

Diagnostic Decision-Making

With a great diagnostic test, but a low prevalence, There is a 50/50 chance you have the ALK gene! But wait ... what if we re-test?

Think of all the false positives with COVID
Think of diagnostic testing

- X-ray \Rightarrow CT Scan \Rightarrow Needle Biopsy
- Each step - more expensive, time-consuming, invasive
- But, identifying higher prevalence population!

Diagnostic Decision-Making

With a great diagnostic test, but a low prevalence There is a 50/50 you have the ALK gene!

But wait ... what if we re-test?

Repeat the ALK test on all patients who tested positive
\square Prevalence is now 50%

- Let's rework the diagnostic test 2×2 table

Diagnostic Decision-Making

Prevalence of ALK in patients who tested positive is 50\%

		Have the ALK Gene		
		Positive (50\%	Negative (50\%)	
	旁	950	50	95\%
	-	50	950	95\%
		1000	1000	2000

Diagnostic Decision-Making

KEY MESSAGES

Sensitivity and Specificity are the focus of assay design and development
\square Sensitivity \equiv Power; 1-Specificity $\equiv \alpha$
The Positive (Negative) Predictive Values are the focus of interpreting results (assay outputs)

■ Everyone knows this
\square PPV is what matters to physicians and patients

Diagnostic Decision-Making

KEY MESSAGES

PPV (NPV) is dependent on the underlying
PREVALENCE of the characteristic of interest (e.g., disease/marker status)

PREVALENCE is the "prior."

PPV \equiv Bayes Formula (slides 16, 22) !!!

The Clinical Trial Analogy

The diagnostic test is the clinical trial
The patient characteristic is whether the treatment meets its Critical Success Factors (unknown truth)

Sensitivity and (1-Specificity) are analogous to "power" and "significance level" of the hypothesis test for the CT
The PPV (NPV) is "Bayesian posterior probability" that the treatment meets (fails) the CSF

THE PPV (NPV) ARE DEPENDENT ON THE PRIOR PROBABILITY OF THE TREATMENT MEETING THE CSF

The Clinical Trial Analogy

Entering Ph $2 \Rightarrow \operatorname{Pr}($ drug meets CSFs) $=20 \%$

Conclusion on Inference

If we all understand PPV is the proper metric for evaluating the likelihood of a (unknown) condition to be present/true using a diagnostic test ...
and ...
A clinical trial is a direct analogy to a diagnostic test ... then ...

Why do we not routinely use the Bayesian Posterior Probability to interpret a clinical trial result ?!?!?!?!

We Should !!!

Part 4

How do we get out of this mess?

A Path Forward

Three Inferential Questions*

What does the data say?

- A p-value is a partial/poor answer.

What do I believe?

\square This requires incorporation of prior information.

What do I decide?

- This requires a utility function.
*Royall, R. M. (1997), Statistical Evidence: A Likelihood Paradigm, volume 71 of Monographs on Statistics and Applied Probability. London: Chapman \& Hall.

A Path Forward

Question 1 - What do the data say?

A p-value is only part of the story.

PRIOR KNOWLEDGE

Prior Probability H_{0} is False

New Evidence (e.g., p-value)

Scientists (everyone!) wants this.

UPDATED BELIEF

Posterior Probability H_{0} is False

A Path Forward

Question 2 - What do I believe?

Let p_{0} be the prior probability that H_{0} is false.
Let $p=p$-value from the test of H_{0} from the current experiment.

The Bayes Factor Bound is

$$
B F B=1 /[-e * p * \ln (p)] \quad(p<1 / e) .
$$

The upper bound on the posterior probability that H_{0} is false $\left(p_{1}\right)$ given the observed data is

$$
\underset{\text { posterior }}{\mathrm{p}_{1}} \leq\left\{\underset{\text { prior }}{\left[\left(1-p_{0}\right) / p_{0}\right]} \underset{\text { data }}{\operatorname{BFB}}\right\}^{-1}
$$

Thomas Sellke, M. J Bayarri \& James O Berger (2001) Calibration of p Values for Testing Precise Null Hypotheses, The American Statistician, 55:1, 62-71.

Another Thought Experiment

Suppose there are 100 potential predictive biomarkers that could be important for a new treatment.
$\square 100$ hypothesis tests, one for each biomarker

Observed p-value $=0.0001$ for one biomarker test
\square Bonferroni adjusted p-value ≤ 100 * $0.0001=0.01$

EUREKA! We have discovered a novel biomarker-defined subgroup.

Another Thought Experiment

ARE YOU SURE?

Suppose further our prior belief is
pr(finding a predictive biomarker)
$=\mathrm{pr}\left(\right.$ at least one H_{0} is false $)=\mathbf{0 . 2 0}$
Prior all H_{0} are true (none are predictive) $=0.80$

Uniform prior per biomarker $=0.20 / 100=0.002$

Another Thought Experiment

ARE YOU SURE?

$p_{0}=0.002$ (uniform prior across 100 biomarkers)
$p=0.0001$ (from hypothesis test)
Recall Bonferroni adjusted $\mathbf{p}=0.01$

$$
p_{1} \leq\left\{1+\left[\left(1-p_{0}\right) / p_{0}\right] \times[-e \times p \times \ln (p)]\right\}^{-1}
$$

Bayesian posterior $\operatorname{pr}\left(\mathrm{H}_{0}\right.$ is false $) \leq 0.44$.

Berger J.O., Wang X., Shen L. (2014). A Bayesian approach to subgroup identification. J Biopharm Stat, 24(1), 110-29.

Real Examples

Dalcetrapib

AnalytixThinking.Blog: Genetic Subgroups and CV Disease

There are a variety of other Bayesian clinical trial topics covered in my blog (e.g., fluvoxamine for COVID-9).

Blog 19: We Won't Get Fooled Again, Again Blog 20: I Am (Probably) Wrong, Maybe

AnalytixThinking.Blog

A Path Forward

A p-value is literally only part of the story!

BAYESIAN INFERENCE

$$
\begin{gathered}
\mathrm{BFB}=1 /\left[-e_{*} \mathrm{p} * \ln (\mathrm{p})\right] \\
\mathrm{p}_{1} \leq\left\{1+\left[\left(1-\mathrm{p}_{0}\right) / \mathrm{p}_{0}\right] / \mathrm{BFB}\right\}^{-1} .
\end{gathered}
$$

A Path Forward

"Always use Bayesian thinking when interpreting clinical trial results so you can quantify how believable the results are."

Steve Ruberg
Your Run-of-the-Mill Bayesian Statistician

Part 5

What Is a P-value Worth Anyway?

What's a P-Value Worth?

Further investigation of P-values

AnalytixThinking.Blog
 No. 7: What does $p<0.05$ mean anyway?

$p_{1} \leq\left\{1+\left[\left(1-p_{0}\right) / p_{0}\right] / B F B\right\}^{-1}$.
posterior
prior
data

What's a P-Value Worth?

Prior	p-value	Posterior (upper bound)

0.3	0.05	0.513

A p-value $=0.05$ is not very strong evidence against the null hypothesis!

What's a P-Value Worth?

\section*{Prior \quad p-value	Posterior
(upper bound)	}

0.3	0.05	0.513

0.7	0.05	0.851

A p-value $=0.05$ might be enough evidence against the null hypothesis.

What's a P-Value Worth?

Prior	p-value	Posterior (upper bound)
0.1	0.05	0.214
0.2	0.05	0.380
0.3	0.05	0.513
0.4	0.05	0.621
0.5	0.05	0.711
0.6	0.05	0.787
0.7	0.05	0.851

A p-value $=0.05$ does not move the "evidentiary needle" very much!

Part 6

A False Dichotomy*

 Confirmatory vs Exploratory

 Confirmatory vs Exploratory}
*Ruberg, S. J. (2020) Détente: A Practical Understanding of P-values and Bayesian Posterior Probabilities. Clin Pharm Ther., 109(6): 1489-1498. doi.org/10.1002/cpt. 2004.

A False Dichotomy

Confirmatory

\square Prespecified, control Type 1 Error, etc. etc.

Exploratory

■ Prespecified, but with less statistical rigor (e.g., without control of Type 1 Error)
■ Unspecified, go where the data leads you

A False Dichotomy

Statistically significant results

■ Confirmatory - credible, believable
■ Exploratory - interesting, but need more data/another trial

- Some journals (e.g., NEJM) prohibit reporting p-values
- Implies no inference is possible or reasonable!

Researchers will ALWAYS evaluate/interpret exploratory analyses

- Why not help quantify what to believe about the results of an "exploratory" analysis?

A False Dichotomy

With a stated prior in place, the terms "confirmatory" and "exploratory" lose their meaning!

All the ingredients are here.

$$
p_{1} \leq\left\{1+\left[\left(1-p_{0}\right) / p_{0}\right] / B F B\right\}^{-1} .
$$

posterior
prior
data

A False Dichotomy

Thought Experiment

Treatment successful in Phase 2
■ Prior probability that it works for Phase 3 is 0.70
Treatment effect more pronounced in a subgroup??

- Literature; mechanism of action; biology of disease
- Prior for exceptional response in subgroup is 0.20
- Pre-specified, but no formal statistical analysis plan

Results of Ph 3 study
■ Overall treatment effect p-value $=0.03$
$■$ Subgroup treatment effect p-value $=0.001$?

A False Dichotomy

Thought Experiment (cont'd)

TEST	PRIOR H_{0} IS FALSE	PHASE 3 P-VALUE
ALL PATIENTS	0.70	0.030
SUBGROUP	0.20	0.001

The "exploratory" result is more convincing than the "confirmatory" result!

The "exploratory" result is the primary finding of the trial!

$$
\text { *Upper bound using } p_{1} \leq\left\{1+\left[\left(1-p_{0}\right) / p_{0}\right] / B F B\right\}^{-1} .
$$

A False Dichotomy

Thought Experiment - Summary

Why debate confirmatory or exploratory?
\square Whether it be a trial or a hypothesis within a trial
Assign each hypothesis of interest a prior probability

- We must know something (informative prior)*
- We have implicit priors

Lessen post hoc debate about "credible" or "spurious"
Quantify level of belief \Rightarrow Better decision-making

Probability of a False Positive Finding

Pr (False Positive)

P-value is conditional on H_{0} being true.

$$
\text { P-value }=\operatorname{Pr}\left(\text { reject } H_{0} \mid H_{0} \text { is true }\right)
$$

Recall the Lottery Example Pr (you receive a share) $=\operatorname{Pr}\left(I\right.$ choose to share IF I win) ${ }^{*} \operatorname{Pr}(I$ win)

What's $\operatorname{Pr}\left(\mathrm{H}_{0}\right.$ is true)? 9,999/10,000
With this prior for H_{0}, a whole lot of evidence is needed to reject it (i.e., 14 consecutive Heads!!)

Pr (False Positive)

$\operatorname{Pr}\left(\right.$ reject $H_{0} \mid H_{0}$ is true)

Designing experiment = significance level
$\square \alpha$-level, Type 1 Error, the size of the test
After data is collected = significance level
\square Smallest p-value for which we would have rejected the null hypothesis

Pr (False Positive)

P-value as evidence (Fisher, 1925, 1926)
■ "The value for which $\mathrm{p}=0.05$... is to be considered significant or not."

P-value as decision-maker (Neyman-Pearson, 1933)

- Balance Type 1 and Type 2 errors using sample size

P-value as both (Lehman, 1986, p. 70).
\square "It is then good practice to determine not only whether the hypothesis is accepted or rejected at the given significance level, but also to determine the smallest significance level $\hat{a}=\hat{a}(x)$, the significance probability or p value, at which the hypothesis would be rejected for the given observation."

A Problem of Inference

 Controversial?", The American Statistician, 73(1), 1-3.

Pr (False Positive)

Conflating

the significance level

of the test (α)

with

the significance level of the data (p-value)

The "silent hybrid solution" (Gigerenzer, 1989).

Pr (False Positive)

Philosophical Question

Design and experiment and accompanying suitable statistical test with a significance level of $\alpha=0.05$.

Conduct the experiment and observe $\mathrm{p}=0.01$.
Reject the null hypothesis - "a positive finding"
What is the probability that this is a false positive finding?

Pr (False Positive)

$$
\begin{aligned}
& \operatorname{Pr}(\text { false positive finding })= \\
& \operatorname{Pr}\left(\mathrm{H}_{0} \text { is true } \mid \mathrm{p}=0.01\right)= \\
& 1-\operatorname{Pr}\left(\mathrm{H}_{0} \text { is false } \mid \mathrm{p}=0.01\right)
\end{aligned}
$$

This is the REAL question of interest!
This is decidedly a Bayesian formulation.

$$
1-\operatorname{Pr}\left(H_{0} \text { is false } \mid p=0.01\right)
$$

hypothesis

Pr (False Positive)

$\operatorname{Pr}($ false positive finding $)=\operatorname{Pr}\left(\right.$ Reject $\mathrm{H}_{0} \mid \mathrm{H}_{0}$ is true $) * \operatorname{Pr}\left(\mathrm{H}_{0}\right.$ is true $)$

$$
\begin{aligned}
& =0.025 * 0.70 \\
& =0.0175
\end{aligned}
$$

Pr (False Positive)

$\operatorname{Pr}($ false positive finding $)=\operatorname{Pr}\left(\right.$ Reject $\mathrm{H}_{0} \mid \mathrm{H}_{0}$ is true $) * \operatorname{Pr}\left(\mathrm{H}_{0}\right.$ is true $)$

$$
\begin{aligned}
& =X * 0.70 \\
& =0.025
\end{aligned}
$$

Pr (False Positive)

WOW!

Difficult to reconcile Frequentist approach and Bayesian approach.

■e.g., "frequentist properties of Bayesian methods"
Frequentist: $\operatorname{pr}\left(\mathrm{H}_{0}\right.$ is true $)=1$.
Bayesian: $\operatorname{pr}\left(\mathrm{H}_{0}\right.$ is true $)<1$.

Part 8

Epistemology

How do we know, what welieve bnow?

Statistics is the science of discerning what is likely to be true.

Epistemology

e.pis•te•moloo.gy

/ə, pistə'mäləjē/
noun PHILOSOPHY
the theory of knowledge, especially with regard to its methods, validity, and scope. Epistemology is the investigation of what distinguishes justified belief from opinion.

What is Probability?

1501-1576

Blaise Pascal

1623-1662

Pierre de Fermat

1607-1665

Christiaan Huygens

1629-1695

1713
(based on work from 1684-1689)

JACOBI BERNOULLI,
Proferf. Bafil. \& utriufque Societ. Reg. Scientiar.
Mathematici Celeberrimi,
ARS CONJECTANDI,
OPUS POSTHUMUM
TRACTATUS
DE SERIEBUS INFINITIS,
EtEpistola Gallicécripta

1) E L. UDO PIL. reticularis.

B A SILEA Impenfis TH URNISIOR UM, Fratum. clo loce xilt

Jacob Bernoulli 1654-1705

Probability as frequency of events occurring

What is Probability?

1662
\mathcal{N} (ataral and $P_{\text {olititical }}$
OBSERVATIONS
Mentioned in a following Index, and made upon the
Bills of Mortality.
By $90 H \approx$ GRAUNT, Citizen of
L O NDON.
With reference to the Goverument, Religias, $T_{\text {rade }}$ Grumb, Agro, Dijught, and the feveral Cringr of the faid Cify.
-Nes, ne weminew Tarha, laby.
Cintratar pever Leflenier -
LONDON,

 Cluychyard, MDC IXII.

1671
A Treatise on Life Annuities

Probability as a concept

(e.g., probability of dying at age X)

More than combinatorics

Johan de Witt

 1625-1672
What is Probability?

1711, 1718, 1738, 1756

Abraham de Moivre

Thomas Bayes

What is Probability?

October 26, 2021

Insights into ... History
 Philosophy Epistemology

Argument for Bayesian approach

Examples

Epistemology

Far better an approximate answer to the right question, which is often vague, than an exact answer to the wrong question, which can always be made precise."

John Tukey

Epistemology

A p-value is no more than the ultimate test statistic scaled to the interval $(0,1)$.

A p-value is a "precise" answer* to the wrong question - pr(Data|Hypothesis).

A p-value is a poor answer to one of the three important questions of inference.
*Frequentists require models and assumptions.

Epistemology

A p-value is a statement about what happened (post hoc)

- The hypothesis test I wish I would have done now that I have seen the data

A p-value is "indirect proof"
\square Proof by contradiction

Epistemology

A Bayesian probability is a "vague" answer* to the right question.

A Bayesian probability is what scientists indeed all of us - want: pr(Hypothesis|Data).

Report the upper bound on the posterior probability of the null hypothesis being false

- Using (at a minimum) a point prior for that hypothesis and the BFB.

[^0]
Epistemology

A Bayesian posterior probability is a statement about the state of Nature
\square What do I believe about the hypothesis now that I have seen the data

A Bayesian posterior probability is "direct proof"

Epistemology

One cannot interpret a p-value in isolation.

One can interpret a Bayesian posterior probability directly.

Epistemology

Significance level and power are important elements of study design (Frequentist)
Positive and negative predictive value are the most appropriate measures for interpretation of study outcomes (Bayesian)

Bayesian perspective answers the question of interest.

(think diagnostic testing)

Epistemology

Frequentist: compute p-value and then do post hoc assessment of how it fits into other evidence

■ Is it consistent with previous/other findings?

Bayesian: Quantify belief a priori and build that into a pre-specified analysis
\square Statisticians advocate pre-specification (ICH-E9)

Epistemology

Epistemology - Summary

Frequentist	Bayesian
"Wrong" Question	Right Question
Indirect	Direct
Post hoc	A Priori
Not interpretable in isolation - need context	Context incorporated into interpretation
Past	Present / Future
Conditional	Unconditional
Exploratory/Confirmatory dichotomy	Hypotheses evaluated quantitatively by their prior

Extra Reading

Statistics in Biopharmaceutical Research
教

A Bayesian Posterior Probability Is the Real Replication Probability

Stephen J. Ruberg

To cite this article: Stephen J. Ruberg (2020): A Bayesian Posterior Probability Is the Real Replication Probability, Statistics in Biopharmaceutical Research, DOI: 10.1080/19466315.2020.1831952

To link to this article: https://doi.org/10.1080/19466315.2020.1831952

Published online: 05 Nov 2020.

Clinical Pharmacology \& Therapeutics

Tutorial
. O. Open Access
(i) $\Theta \odot$

Détente: A Practical Understanding of P values and Bayesian Posterior Probabilities

Stephen J. Ruberg
First published: 03 August 2020 | https://doi.org/10.1002/cpt. 2004 | Citations: 1

Null hypothesis significance testing (NHST) with its benchmark P value <0.05 has long been a stalwart of scientific reporting and such statistically significant findings have been used to imply scientifically or clinically significant findings. Challenges to this approach have arisen over the past 6 decades, but they have largely been unheeded. There is a growing movement for using Bayesian statistical inference to quantify the probability that a scientific finding is credible. There have been differences of opinion between the frequentist (i.e., NHST) and Bayesian schools of inference, and warnings about the use or misuse of P values have come from both schools of thought spanning many decades. Controversies in this arena have been heightened by the American Statistical Association statement on P values and the further denouncement of the term "statistical significance" by others. My experience has been that many scientists, including many statisticians, do not have a sound conceptual grasp of the fundamental differences in these approaches, thereby creating even greater confusion and acrimony. If we let A represent the observed data, and B represent the hypothesis of interest, then the fundamental distinction between these two approaches can be described as the frequentist approach using the conditional probability $\operatorname{pr}(\mathrm{A} \mid \mathrm{B})$ (i.e., the P value), and the Bayesian approach using $\operatorname{pr}(B \mid A)$ (the posterior probability). This paper will further explain the fundamental differences in NHST and Bayesian approaches and demonstrate how they can co-exist harmoniously to guide clinical trial design and inference.

Thank You

$\operatorname{Pr}(I$ thank you $)=0.999$

$\operatorname{Pr}($ you thank me) $=$...

[^0]: *Vague in the sense of requiring a subjective prior.

